skip to main content


Search for: All records

Creators/Authors contains: "Albertus, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Direct nonoxidative methane conversion (DNMC) transforms CH4to higher (C2+) hydrocarbons and H2in a single step, but its utility is challenged by low CH4 equilibrium conversion, carbon deposition (coking), and its endothermic reaction energy requirement. This work reports a heat‐exchanged autothermal H2‐permeable tubular membrane reactor composed of a thin mixed ionic‐electronic conducting SrCe0.7Zr0.2Eu0.1O3–δmembrane supported on a porous SrCe0.8Zr0.2O3–δ tube in which a Fe/SiO2 DNMC catalyst is packed, that concurrently tackles all of these challenges. The H2‐permeation flux drives CH4 conversion. O2from an air simulant (O2/He mixture) sweep outside the membrane reacts with permeated H2 to provide heat for the endothermic DNMC reaction. The energy balance between the endothermic DNMC and exothermic H2 combustion on opposite sides of the membrane is achieved, demonstrating the feasibility for autothermal operation using a simple air sweep gas. Moreover, the back diffusion of O2 from the sweep side to the catalyst side oxidizes any deposited carbon into CO. Thus, for the first time demonstrating all the desired attributes, a heat‐exchanged H2‐permeable membrane reactor capable of achieving single‐step auto‐thermal DNMC catalysis while simultaneously improving CH4conversion and preventing coking is achieved. 

     
    more » « less